
Performance Modelling and Dynamic

Scheduling on Heterogeneous-ISA

Multi-Core Architectures

Nirmal Kumar Boran, Dinesh Kumar Yadav, and Rishabh Iyer

Computer Architecture and Dependable Systems Laboratory (CADSL),
IIT Bombay

Abstract. Heterogeneous-ISA multi-core architectures have emerged as
a promising design paradigm given the ever-increasing demands on sin-
gle threaded performance. Such architectures comprise multiple cores that
differ not just in micro-architectural parameters (e.g., fetch width, ROB
size) but also in their Instruction Set Architectures (ISAs). These archi-
tectures extract previously latent performance gains by executing different
phases of the program on the core (and ISA) best suited to it, as opposed
to executing the entire program on a single ISA. In such a computing
paradigm, maximum performance is only extracted when we ensure that
at every point in the program’s execution, the program runs on the core
best suited to it. In this work, we propose a migration framework that
practically and accurately decides when to migrate the program across
different cores (and ISAs) to extract maximum performance gains. Un-
der the covers, this framework combines a regression based performance
modelling technique with a greedy scheduling algorithm. Our performance
modelling technique leverages hardware performance counters prevalent
in all major processors today to accurately estimate the performance of
the program on different ISAs to within an error of 6%. Putting it to-
gether with our greedy scheduler enables our framework to achieve single
thread performance speedups of 29.6% with respect to a baseline single
ISA heterogeneous architecture.

Keywords: Heterogeneous ISA multi-core chip · Single thread perfor-
mance · Regression techniques · Execution migration.

1 Introduction

The history of microprocessor evolution throws light on the fact that the per-
formance of single-threaded programs has always of prime importance. During
the last century, researchers were successful in improving single threaded perfor-
mance until saturation of the frequency scaling. Further performance enhance-
ment required the addition of resources like increasing the size of the register
file, ROB and instruction window which led to an increase in the processor’s
power dissipation. However, designers eventually hit the power wall [10], which
led to a marked shift from single-core to multi-core architectures.

Appears in and was awarded Best Paper at the 23rd International Symposium
on VLSI Design and Test (VDAT), July 2019



Multi-core architectures can be classified into three types: 1) Homogeneous,
2) Heterogeneous and 3) Dynamic. Homogeneous multi-core (HoMC) architec-
tures [13] consist of several identical cores (both ISA & micro-architecture) and
focus on extracting Thread Level Parallelism (TLP). Heterogeneous multi-core
(HeMC) [6] architectures, on the other hand, improve the energy efficiency of
the processor by leveraging variation in micro-architectural parameters (not ISA)
across cores. They typically contain a combination of several small and a few
aggressive cores and allowing them to exploit both TLP and Instruction Level
Parallelism (ILP). Finally, to increase the energy efficiency further, Dynamic
Core (DC) architectures [5] attempt to modify the micro-architectural parame-
ters of cores on-the-fly, morphing from a single big core into many small cores
(or vice-versa) depending upon the program.

Venkat et al. [3] [15] introduced the notion of Heterogeneous ISA multi-core
(HeIMC) architectures. Unlike the previous designs, in which all the cores of
the processor had the same ISA, different cores in the processor were now built
using different ISAs (e.g., x86, ARM, MIPS). The insight behind this work is that
ISA diversity can play a vital role in improving both performance and energy
efficiency for single threaded programs. The authors show that different phases of
the same program can display an affinity for different ISAs. This affinity arises
due to a number of factors namely code density, dynamic instruction count,
register pressure etc. of the program phase. Hence, if the program is migrated
across cores with different ISAs, such that each phase is executed on the ISA
it is most affine to, previously latent gains in single threaded performance can
be achieved. The authors also describe compiler modifications [3] that make this
migration practical.

However, Venkat et al. [3] [15] focus only on the prospective gains of HeIMC
architectures and NOT on how to achieve them. To extract maximum perfor-
mance gain, HeIMC architectures require that the program be migrated cor-
rectly, ensuring that each phase of the program is executed on the core (and
ISA) it is most suited to. In fact, as we show in Section 2, incorrect decisions
can lead to deterioration in single-threaded performance. Venkat et al. do not
address this issue at all, assuming the existence of a prediction oracle which
makes perfect decisions. This is naturally infeasible in practice.

To address this gap and close the loop on HeIMC architectures, we propose a
framework that practically and accurately decides when to migrates the program
across different cores (and ISAs) to extract maximum performance gain. Under
the covers, this system combines a regression-based performance modelling tech-
nique with a greedy scheduling algorithm. The performance modelling technique
practically estimates the performance of the current phase of the program by
leveraging micro-architectural parameters obtained from hardware performance
counters present in every major processor today [12]. By making accurate pre-
dictions and scheduling decisions, our system achieves single thread performance
speedups of 29.6% with respect to a baseline single ISA HeMC architecture.

The remainder of the paper is organized as follows: Section 2 motivates the
need for a novel performance modelling technique for HeIMC architectures. Sec-

2



tion 3 explains the proposed method of performance modelling with the required
details. Section 4 explains our scheduling mechanism and the trade-offs involved.
Section 5 presents the results of our evaluation and finally, Section 6 concludes,
with certain directions for future research.

2 Motivation and State-of-the-Art

In this section, we show the proposed performance benefits of HeIMC architec-
tures and then describe why we need a novel performance modelling technique.

To demonstrate the ISA affinity exhibited by programs and the proposed
benefits in single threaded performance, we divide the ‘astar’ benchmark from
SPEC CPU2006 [4] into 15 phases and execute it on ARM (RISC) and x86
(CISC) cores. The configurations used for both the cores is mentioned in Table-
1. Apart from the number of General Purpose Registers (GPRs) which is an
intrinsic property of the ISA, all micro-architecture parameters are identical
across the two cores.

Figure 1 shows the execution time of each phase on both cores. The results
show that by only changing the ISA, there is sufficient variability across the
execution time of each phase. Further, neither core is dominant throughout,
with x86 performing considerably better on phases 1, 7-14 and ARM performing
considerably better on phases 2-6 and 15. Clearly, running the entire program
solely on any one of these cores does not lead to optimal performance.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
y
c
le

s
 (

x
1

0
5
)

Phase Id

ARM
x86

Fig. 1. Execution time of different phases of benchmark astar

Figure 2 shows the latent performance benefits that can be extracted by
HeIMC architectures (accurate-migrations). When running each phase of the
program on the core (and ISA) it is most suited to, the performance of the
program can increase by up to 39% (This is an upper bound because it ignores
migration overhead). On the other hand, if the performance modelling is flawed,

3



and mispredicts where to execute each phase of the program, it can lead to
unacceptable performance deterioration of up to 26.4%.

 0

 5

 10

 15

 20

 25

 30

ARM x86 Accurate mig Inaccurate mig

C
y
c
le

s
 (

x
1

0
^6

)

Cycles

Fig. 2. Execution time when the program is run on ARM, x86 and execution time
when each phase is run on the core most suited to it (”Accurate mig”) and least suited
to it (”Inaccurate mig”)

Clearly, maximum performance benefits are only achieved when the program
is migrated across the cores at the right time. Naturally, this requires a prediction
and scheduling mechanism, which dictates when this migration is supposed to
take place. Given this need for an accurate cross-ISA performance modelling
technique, we now explain why prior work on the subject is inadequate.

The first work on performance modelling in multi-core architectures was by
Kumar et al. [6] who used a sampling-based technique to predict migration of
programs on different cores. In this approach, they would run a small section of
the code on all available cores and run the remainder of the code on the core
that performed best for the small section. This leads to poor resource utilization
and does not scale with increasing core counts. Hence, researchers made at-
tempts to use analytical models to model CPI of various programs on single ISA
heterogeneous architectures. Craeynest et al. [14] introduced a regression-based
performance impact estimator that used ILP and MLP (Memory level paral-
lelism) as parameters to predict migration. This was taken further by Lukefahr
et al. [9] and Pricopi et al. [11].

While techniques work well for HeMc architectures, they do not make ac-
curate predictions for HeIMC architectures. This is because they are simply
not designed to take into account factors that determine performance variation
across ISAs, such as code density, register pressure and instruction mix since
these factors are identical across cores of the same ISA. Boran et al. [2] demon-
strate this by attempting to predict execution time across ISAs using a regression
model which takes into account only micro-architectural parameters. However,
their approach leads to unacceptably high prediction errors which motivated us
to build a better model that takes into account inter-ISA heterogeneity. Thus, in

4



this work, in addition to incorporating features that take into account inter-ISA
heterogeneity, we also change our machine learning model, using linear regres-
sion which is more accurate than the General regression neural network(GRNN)
and the model used in [2].

3 Performance Modelling

In this section, we describe, in detail, our technique for cross-ISA performance
modelling. The goal of this technique is to utilize micro-architectural and ISA-
specific parameters obtained from the core that the program is currently running
on, to predict what the execution time of the program would be if run on a
different core (and ISA). This prediction will then be fed to the scheduler which
dictates when the migration should take place. From here-on, we will use the
term source ISA/core to refer to the ISA/core that the program is currently
running on, and the term target ISA/core to refer to the ISA/cores that the
program can migrate to.

The work most closely related to ours [2] proposed a two-phased approach
for performance modelling wherein they used the micro-architectural parameters
from the source ISA to predict the same parameters on the target ISA. Then,
using these predicted target ISA parameters, they predicted the execution time
on the target ISA. Their approach has two main shortcomings:

– The decoupling of execution time prediction into two independent phases
compounds prediction errors. In their work, Boran et al. [2] show that exe-
cution time predictions can be off by up to 54%.

– They do not take into account any parameters that characterize the inter-
ISA heterogeneity, such as code density, register pressure or instruction mix,
leading to high prediction errors.

We improve upon their model in the following ways:

– We eliminate the artificially enforced decoupling in the prediction of execu-
tion time. Consequently, we directly predict the execution time on the target
ISAs using the parameters of the source ISA.

– We specifically introduce parameters that quantify the inter-ISA heterogene-
ity, specifically the instruction mix, dynamic instruction count and paral-
lelism (ILP, MLP)

– We replace their regression model with a linear regression model, which
performs better for single-level predictions.

3.1 Extracting Relevant Parameters

We now describe the list of parameters we use to predict the execution time on
the target ISA and how we extract them. In this work, we use a total of thirteen
parameters to predict execution time (number of execution cycles). The pa-
rameters include branch miss-predictions, L1-I-cache misses, L1-D-cache misses,

5



L2 cache misses, Reorder Buffer full events, Instruction Queue full events, Store
Queue full events, ILP, MLP, MSHR (Miss Status Handling Register) full events,
instruction mix (Number of load instructions, Number of floating point instruc-
tions) and the dynamic instruction count.

L1-I-cache, L1-D-cache, and L2 cache misses capture the effects of the cache
hierarchy on the execution time. Information regarding data-dependency induced
stalls has been extracted by the occurrences of the ROB, Instruction Queue and
Store Queue being full. ILP and MLP have been considered for determining the
available parallelism given the specific ISA and core that the program is running
on. Instruction mix and dynamic instruction count are chosen to quantify ISA
specificity and finally, the behaviour of the branch predictor is captured using
the branch misprediction parameter.

A common feature of all of these parameters is that their extraction is simple
and practical. All parameters except ILP and MLP can be directly obtained from
hardware performance counters prevalent in every major processor variant today.
To calculate ILP and MLP we rely on schemes proposed by previous work [9]. ILP
is estimated by using a hardware counter which maintains a running sum of the
instructions in the issue stage whose execution requires the data from the other
instructions currently under execution. This counter captures all the instructions
which are stalled due to dependencies, thus providing us with an inverse measure.
For MLP, we leverage a hardware counter that maintains a running sum of the
number of MSHR entries at every cache miss. This gives us an estimate of MLP
because during a cache miss, all misses currently being handled in parallel will
have an entry in the MSHR. We take individual averages of the running sums
maintained by both counters (running sum/total instructions) to estimate the
ILP and MLP respectively.

3.2 Linear Regression Model

Given those parameters, we now describe our linear regression based performance
model. In our evaluation Section 5, we show that it outperforms the GRNN model
proposed in previous work. Given a source ISA in execution (ISAA) and a target
ISA (ISAB), our linear regression model for estimation of the number of cycles
is given by:

CycleB =K + a1.(L1DcacheMissA) + a2.(L1IcacheMissA)

+ a3(L2cacheMissA) + a4.(IQFullEventsA)

+ a5.(SQFullEventsA) + a6.(ROBFullEventsA)

+ a7.(BranchMissPredictionA) + a8.(MLPA)

+ a9.(MSHRFullEventsA) + a10.(ILPA)

+ a11.(LoadCountA) + a12.(FloatInstructionA)

+ a13.(DynamicInstructionCountA) (1)

where a1 to a13 are regression coefficients, CycleB is number of cycles for
ISAB and K is a constant

6



In this work, we consider three ISAs namely x86, ARM and Alpha. We build
a total of 6 regression models: for each of the three ISAs, we predict the per-
formance of the other 2. The idea here is that these models are built offline
and incorporated into the processor with the coefficients of the model stored in
special registers. Then, when programs are executed, these models continuously
predict the performance on the other two ISAs and pass these predictions to the
scheduler.

4 Scheduling

In this section, we describe the design of our scheduler. We first provide necessary
background on how a cross-ISA compiled program looks like, before detailing our
scheduling algorithm and the tradeoffs involved.

De Vuyst et al [3] describes compiler modifications that allow a program
to efficiently migrate across cores. The generated binary possesses a number of
equivalence points at which the memory state of the binary is consistent across
different ISAs. This identical memory state allows for low-overhead migration
of the program at one of these equivalence points. Note, migrating at any other
point is expensive and requires dynamic binary translation on the target ISA till
the next equivalence point is reached. Given the overhead of migration, these
equivalence points are typically kept around 100M instructions apart. We call
each such division of 100M instructions a phase. Figure 3 further illustrates
equivalence points and phases.

Fig. 3. Equivalence points are chosen at function call sites in the compiler IR. They
are typically around 100M instructions apart

7



This division of the program into phases poses a significant challenge for the
scheduler. Ideally, we would like to use the first few (10-20M) instructions of the
phase to predict which ISA it is suited to, much like [6]. Unfortunately, this is
infeasible since migration can only occur at the equivalence points. Consequently,
all scheduling decisions must be made before the phase begins to execute.

We extract the parameters mentioned in Section 3.1 for only the final 10M
instructions of a phase and feed it into our regression-based performance model
which predicts the performance on the target ISAs. Using the final 10M instruc-
tions leads to accurate predictions because it is a small yet significant number of
instructions closest to the next phase and variations will be few, but meaningful
predictions can be made.

Once we have the predictions for execution time for all the target ISAs,
we simply employ greedy scheduling, i.e., at the next equivalence point, the
scheduler migrates the program to the ISA with least predicted execution time.
Naturally, for all the target ISAs we include the migration overhead into the
estimation.

5 Evaluation

In this section, we describe the results from our evaluation, which answer 2
primary questions: 1) Does the regression-based performance model predict per-
formance accurately across ISAs and 2) Does the scheduling algorithm correctly
migrate the program to deliver overall speedups in single-threaded performance?

5.1 Methodology

As mentioned previously, we consider 3 ISAs in this work - x86, ARM and Alpha.
Since the focus is on inter-ISA heterogeneity, we keep the configuration for all
3 ISAs identical (Number of GPRs is a property of the ISA). The configuration
for all the cores is shown in Table 1. The clock speed for all three cores is 2GHz.
We use the gem5 simulator [1] to simulate performance and SPEC CPU2006 [4]
benchmark suite as our target programs.

Table 1. Core configurations

Design Parameter ARM Alpha x86

Architectural Registers 32 GPR 64GPR 16 GPR

Cache line size(bytes) 64 64 64

LSQ size (bytes) 32 32 32

Fetch width 4 4 4

Instruction Queue entries 64 64 64

ROB entries 192 192 192

DCache,ICache size 32KB 32KB 32KB

L2 Cache size 256KB 256KB 256KB

8



We use the results from [15] to determine the migration overhead. As a simple
over-approximation, we consider the maximum migration overhead they report
for the SPEC CPU2006 benchmark suite.

5.2 Results

 0

 10

 20

 30

 40

 50

 60

A
R
M

->A
lpha

A
R
M

->x86

A
lpha->A

R
M

A
lpha->x86

x86->A
R
M

x86->A
lpha

P
e

rf
o

rm
a

n
c
e

 E
rr

o
r(

%
)

Previous Model
GRNN

Linear Regression

Fig. 4. Root mean squared error of performance modelling of Previous Model [2],
GRNN and Linear Regression. ISA1 —> ISA2 denotes estimation of performance for
the core with ISA2 while running the program on the core with ISA1

Accuracy of performance modelling technique To evaluate the predic-
tion accuracy of our regression-based performance model, we compare the Root
Mean Squared (RMS) prediction error across several schemes for each of the 6
models that we build. We compare our linear regression-based model against
two schemes - 1) A GRNN model from prior work [2](Previous Model) and 2)
A GRNN model using all 13 parameters - including the ones accounting for
inter-ISA heterogeneity (GRNN). For (1) we only use values wherever provided.
Comparing against (1) illustrates the joint effect of both using linear regression
and including parameters that capture the inter-ISA heterogeneity. Comparing
against (2) enables us to quantify the improvements due to using linear regres-
sion since the parameter set is identical for both schemes.

Figure 4 compares the RMS prediction error for all three schemes across pre-
dictions for all phases of all the benchmarks in the SPEC CPU2006 benchmark
suite. The phase length taken for performance modelling is 10M.

Two clear trends emerge:

– Irrespective of the model, linear regression always outperforms the GRNN.
The linear regression based model leads to errors ranging from 1.7% to 5.7%,
while the GRNN leads to errors ranging from 7.5% to 9.4%.

9



– Both schemes outperform prior work considerably. This is due to two factors
- 1) The introduction of additional parameters that capture inter-ISA hetero-
geneity such as the dynamic instruction count and the instruction mix and
2) Replacing the two-phase prediction which compounds prediction errors
with a simple one-phase prediction scheme.

We also compare the standard deviation of the RMS error for both the GRNN
and Linear regression-based models. Linear regression has a 26% lower standard
deviation than the GRNN model making it lesser uncertain and more reliable.

Dynamic scheduling To evaluate whether our scheduling algorithm migrates
the program correctly, we compare the speedup obtained in the HeIMC architec-
ture as opposed to the base case of a single ISA architecture. Figure 5 illustrates
the result. Our regression based scheduler shows a 29.6% increase in mean perfor-
mance when compared to the x86 baseline and a 19.5% increase in performance
on the best performing architecture. Additionally, the regression-based predic-
tor is only 12.2% off the oracle. Please note that the oracle is a hypothetical
case in which each phase runs on the core it is most suited to. Hence the Oracle
case represents the maximum possible speedup. The phase length for dynamic
scheduling is taken as 100M. The models were trained using data from all of the
SPEC CPU2006 benchmarks (70% training data, 30% testing data).

 0

 0.5

 1

 1.5

 2

 2.5

m
cf

bzip2

hm
m

er

specrand

sjeng

astar

gobm
k

libquantum

m
ilc

gm
ean

S
p

e
e

d
 u

p
 w

.r
.t

 x
8

6

ARM
Alpha

x86
Regression

Oracle

Fig. 5. Average speedup of different benchmarks when entire program is scheduled on
ARM, Alpha or x86 and compared with HeIMC architecture with regression and oracle
based scheduling

In the previous experiment, the model was only evaluated on programs it
had already been exposed to. When deployed, however, our framework must
run accurately even for programs it has not been trained on. To evaluate this
generality and resilience of our migration framework, we trained the model using
only a subset of the SPEC CPU2006 benchmark suite and tested it on others.
Then we measured how accurately the scheduler migrates the program and the
speedups achieved on these unseen programs. Figure 6 illustrates the results.

10



We see that on average, our system works even for programs it has not seen
before, producing an average speedup of 24.4% over x86 and only 16% less than
the oracle. Additionally, our system migrates the program to the core it is most
suited 82.94% of the time. Given that the SPEC CPU2006 benchmark suite
consists of programs that are inherently very different from one another, these
results show that our model is resilient and can be deployed without having to
be re-trained frequently.

 0

 0.5

 1

 1.5

 2

 2.5

 3

m
cf_specrand

hm
m

er_bzip2_m
ilc

sjeng_libquantum

gobm
k_astar

gm
ean

S
p

e
e

d
 u

p
 w

.r
.t

 x
8

6

Regression
Oracle

Fig. 6. Speedup w.r.t x86 of SPEC CPU2006 benchmarks when our system faces pro-
grams it has not been trained on. Here the x-axis labels represents benchmarks used
only for testing while remaining benchmarks were used for training.

Energy efficiency We also ran an experiment to see whether the HeIMC ar-
chitecture would increase the energy efficiency of the system. For this, we used
the McPAT [8] simulator to compare the energy consumed. We have calculated
the energy consumed while the whole benchmark is run on ARM, alpha, x86
and these energies are compared with energy consumed for the HeIMC archi-
tecture which uses our performance model and scheduling algorithm. In our
experiments, we find that there is very little change in energy consumption.
This is likely because all three cores in our system had an identical configuration
the ISA which displays the maximum performance also consumes the maximum
power. Additionally, our scheduler is only designed for optimizing performance.
In future work, we plan to incorporate the energy consumption also into the
decision making process.

Hardware Overhead The proposed modelling method and scheduling algo-
rithm have minimal hardware overhead. Since we are doing the training offline
in software, we only require 14 registers to store the weights for performance

11



 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

astar

bzip2

gobm
k

hm
m

er

libquantum

m
cf

sjeng

specrand

m
ilc

gm
ean

E
n

e
rg

y
 n

o
rm

a
liz

e
d

 t
o

 x
8

6

Alpha
ARM

x86
Regression

Fig. 7. Energy comparison

modelling using the linear regression method. The compute scheduler requires
thirty-nine 8-bit multipliers for applying weights to the input parameters along
with three 32-bit adders. Please note that a GRNN based model has more hard-
ware overhead when compared to a linear regression based one.

6 Conclusion and Future Work

In this work, we have shown that it is feasible to extract performance bene-
fits from HeIMC architectures by utilizing lightweight and practical techniques
for performance modelling and dynamic scheduling. Our framework combines
a regression-based performance model with a greedy scheduling algorithm. Our
performance model estimates the performance of a program across ISAs within
6% error-limit and our scheduler migrates the program to the core it is most
suited to 83% of the time for program types it has never seen before. Together,
these techniques achieve an average increase of 29.6% in single-threaded perfor-
mance on the SPEC CPU2006 benchmark suite.

We see several interesting avenues for future work. First and foremost, we
plan to introduce energy efficiency into the scheduling decisions which will al-
low HeIMC architectures to save considerable energy as opposed to HeMC ones.
For instance, introducing a specifically energy-efficient ISA such as thumb and
only migrating when the ILP of the program is very low can lead to an en-
ergy efficient system with minimal degradation in performance. In such energy
efficient systems, we would also like to focus on the idea proposed by Lee et
al. [7] which shows that reducing the instructions in the ARM ISA has shown
to greatly reduce the logical complexity of hardware, such ISA diversity enables
further energy efficiency.

Another avenue is modifying the scheduling algorithm for when multiple
programs exist and want to migrate at different times. We expect this co-located
scenario to be quite challenging. Additionally, apart from heterogeneous ISA
scheduling, performance modelling can have many other applications which may
be helpful for other researchers. For instance, accurate performance modelling

12



can provide information w.r.t to which workloads must be co-located together
to avoid destructive interference in performance.

References

1. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM
SIGARCH Computer Architecture News (2011)

2. Boran, N.K., Meghwal, R.P., Sharma, K., Kumar, B., Singh, V.: Performance mod-
elling of heterogeneous ISA multicore architectures. In: East-West Design & Test
Symposium (EWDTS), 2016 IEEE. pp. 1–4. IEEE (2016)

3. DeVuyst, M., Venkat, A., Tullsen, D.M.: Execution migration in a heterogeneous-
isa chip multiprocessor 40(1), 261–272 (2012)

4. Henning, J.L.: SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Ar-
chit. News (Sep 2006). https://doi.org/10.1145/1186736.1186737

5. Ipek, E., Kirman, M., Kirman, N., Martinez, J.F.: Core fusion: accommodating
software diversity in chip multiprocessors. ACM SIGARCH Computer Architecture
News 35(2), 186–197 (2007)

6. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-
ISA heterogeneous multi-core architectures: The potential for processor power
reduction. In: Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on. pp. 81–92. IEEE (2003)

7. Lee, W., Sunwoo, D., Emmons, C.D., Gerstlauer, A., John, L.: Exploring oppor-
tunities for heterogeneous-isa core architectures in high-performance mobile socs.
Tech. rep., Technical Report UT-CERC-17-01, The University of Texas At Austin
(2017)

8. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
Mcpat: an integrated power, area, and timing modeling framework for multicore
and manycore architectures. In: Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on. pp. 469–480. IEEE (2009)

9. Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F.M., Dreslinski, R.,
Wenisch, T.F., Mahlke, S.: Composite cores: Pushing heterogeneity into a
core. MICRO-45, IEEE Computer Society, Washington, DC, USA (2012).
https://doi.org/10.1109/MICRO.2012.37

10. Patterson, D.: The trouble with multicore. Spectrum, IEEE 47, 28 – 32, 53 (08
2010). https://doi.org/10.1109/MSPEC.2010.5491011

11. Pricopi, M., Muthukaruppan, T.S., Venkataramani, V., Mitra, T., Vishin, S.:
Power-performance modeling on asymmetric multi-cores. In: Compilers, Architec-
ture and Synthesis for Embedded Systems (CASES), 2013 International Conference
on. pp. 1–10. IEEE (2013)

12. Sprunt, B.: The basics of performance-monitoring hardware. IEEE Micro 22(4),
64–71 (2002)

13. Taylor, M.B., Lee, W., Miller, J.E., Wentzlaff, D., Bratt, I., Greenwald, B., Hoff-
mann, H., Johnson, P., Kim, J.S., Psota, J., Saraf, A., Shnidman, N., Strumpen,
V., Frank, M.I., Amarasinghe, S.P., Agarwal, A.: Evaluation of the raw micro-
processor: An exposed-wire-delay architecture for ILP and streams. In: 31st In-
ternational Symposium on Computer Architecture (ISCA 2004), 19-23 June 2004,
Munich, Germany (2004)

13

https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1109/MICRO.2012.37
https://doi.org/10.1109/MSPEC.2010.5491011


14. Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., Emer, J.: Scheduling het-
erogeneous multi-cores through performance impact estimation (pie) 40(3), 213–
224 (2012)

15. Venkat, A., Tullsen, D.M.: Harnessing ISA diversity: Design of a heterogeneous-
isa chip multiprocessor. In: Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on. pp. 121–132. IEEE (2014)

14


	Performance Modelling and Dynamic Scheduling on Heterogeneous-ISA Multi-Core Architectures 

